These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of cyclic nucleotides in the urinary tract.
    Author: Wheeler MA, Ayyagari RR, Wheeler GL, Weiss RM.
    Journal: J Smooth Muscle Res; 2005 Feb; 41(1):1-21. PubMed ID: 15855736.
    Abstract:
    Cyclic nucleotide levels are controlled through their synthesis from nucleotide triphosphates by cyclases and their degradation to 5'-monophosphates by phosphodiesterases (PDEs). Components controlling cyclic AMP-induced relaxation in the urinary tract include receptors, inhibitory and stimulatory G-proteins, isoforms of adenylyl cyclase and PDEs. The responsiveness of PDEs to a variety of physiological challenges is related to the presence of multiple families of isoenzymes with specific localization within tissues and within cells. At least 11 families of PDEs encode more than 50 PDE proteins produced in mammalian cells. In the urinary tract, characterization of PDE isoforms has lagged behind other systems and much of the literature was published prior to identification of PDE7, 8, 9, 10, 11. Specific PDE inhibitors regulate smooth muscle function in the bladder, urethra, prostate and ureter. The pharmacological potential of these inhibitors may include treatment of urge incontinence and the low compliance bladder, and treatment of prostate cancer. G-proteins also regulate cyclic AMP production. Changes in specific G- protein isoforms with aging, most prominently Gialpha2, cause decreased relaxation response in the aging bladder. As we have seen here with aging and certainly in other disease processes, levels of the components of adenylyl cyclase/phosphodiesterase/protein kinase can change and thus affect the relaxation response. By exploitation of differences in PDE expression in disease, such as the overexpression of PDEs in cancer, treatment options may present themselves.
    [Abstract] [Full Text] [Related] [New Search]