These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of human mandibular osteoblasts grown on two commercially available titanium implant surfaces. Author: Galli C, Guizzardi S, Passeri G, Martini D, Tinti A, Mauro G, Macaluso GM. Journal: J Periodontol; 2005 Mar; 76(3):364-72. PubMed ID: 15857069. Abstract: BACKGROUND: Surface characteristics play a major role in determining tissue response to implants and therefore their clinical outcome. The aim of the present study was to compare two commercially available titanium surfaces: plasma sprayed (TPS) and sand-blasted, acid-etched surface (SLA). METHODS: The surfaces were characterized by roughness testing, scanning electronic microscopy (SEM), Raman spectroscopy, and protein adsorption to determine their microtopographic and chemical properties. The effect of the surfaces on human mandibular osteoblasts was then studied in terms of cell morphology, adhesion, proliferation, and differentiation. Human osteoblasts from the mandible were cultured on these two surfaces and evaluated at 3, 6, 24, and 48 hours to determine cell attachment and morphology. Growth and differentiation kinetics were subsequently investigated by evaluating cell growth, alkaline phosphatase activity, osteocalcin and osteoprotegerin production at 7, 14, and 21 days. RESULTS: Although roughness was quite similar, the two surfaces presented strong differences in their topography, and cell morphology varied as a consequence. Osteoblasts on SLA appeared more elongated and spindle shaped than those on TPS, and their adhesion at 3 and 6 hours was weaker, but reached that of cells on TPS at hour 24. Cell proliferation was greater on SLA surfaces but differentiation parameters; i.e., alkaline phosphatase and osteocalcin, provided better results on TPS surfaces. Osteoprotegerin production was enhanced on TPS surfaces at days 14 and 21. CONCLUSION: Although cells grown on both surfaces exhibited good adhesion capabilities, a well-differentiated osteoblastic phenotype, and maintained a clear proliferation potential, our study suggests that plasma-sprayed treatment offers a better performance than SLA by creating, at least in the early phases, better conditions for tissue healing.[Abstract] [Full Text] [Related] [New Search]