These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of benzophenone-containing photoactivatable linear vasopressin antagonists: pharmacological and photoreactive properties.
    Author: Ponthieux S, Cabot J, Mouillac B, Seyer R, Barberis C, Carnazzi E.
    Journal: J Med Chem; 2005 May 05; 48(9):3379-88. PubMed ID: 15857144.
    Abstract:
    We designed and synthesized new photoactivatable linear vasopressin analogues containing benzophenone photophores. All compounds were monitored and purified using RP-HPLC and characterized by mass spectrometry. Affinity and selectivity were determined in CHO cells expressing either human V(1a), V(1b) or V(2) receptor subtypes. Within the series, compounds 6 (PhCH(2)CO-lBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)) and 9 (PhCH(2)CO-dBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)), containing a benzoylphenylalanine residue (Bpa), were selected and their antagonistic properties determined (K(inact) = 1.87 and 0.35 nM, respectively). The dissociation constant of the most potent candidate (compound 9) was further calculated from saturation experiments using the (125)I derivative (K(d) = 0.07 +/- 0.01 nM). Photolabeling experiments using radioactive compound 9 as a probe were specific and UV-dependent and allowed the identification of two bands at molecular masses around 85-90 kDa and 46 kDa, respectively, as previously described by Phalipou et al., using two photoreactive linear azidopeptide antagonists. The results suggest therefore that compound 9 is a potent new tool for the accurate mapping of the human V(1a) receptor antagonist binding site.
    [Abstract] [Full Text] [Related] [New Search]