These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms involved in the antinociception caused by agmatine in mice. Author: Santos AR, Gadotti VM, Oliveira GL, Tibola D, Paszcuk AF, Neto A, Spindola HM, Souza MM, Rodrigues AL, Calixto JB. Journal: Neuropharmacology; 2005 Jun; 48(7):1021-34. PubMed ID: 15857629. Abstract: The present study examined the antinociceptive effects of agmatine in chemical behavioural models of pain. Agmatine (1-30 mg/kg), given by i.p. route, 30 min earlier, produced dose-dependent inhibition of acetic acid-induced visceral pain, with mean ID50 value of 5.6 mg/kg. Given orally, 60 min earlier, agmatine (10-300 mg/kg) also produced dose-related inhibition of the visceral pain caused by acetic acid, with mean ID50 value of 147.3 mg/kg. Agmatine (3-100 mg/kg, i.p.) also caused significant and dose-dependent inhibition of capsaicin- and glutamate-induced pain, with mean ID50 values of 43.7 and 19.5 mg/kg, respectively. Moreover, agmatine (1-100 mg/kg, i.p.) caused marked inhibition of both phases of formalin-induced pain, with mean ID50 values for the neurogenic and the inflammatory phases of 13.7 and 5.6 mg/kg, respectively. The antinociception caused by agmatine in the acetic acid test was significantly attenuated by i.p. treatment of mice with L-arginine (precursor of nitric oxide, 600 mg/kg), naloxone (opioid receptor antagonist, 1 mg/kg), p-chlorophenylalanine methyl ester (PCPA, an inhibitor of serotonin synthesis, 100 mg/kg once a day for 4 consecutive days), ketanserin (a 5-HT2A receptor antagonist, 0.3 mg/kg), ondansetron (a 5-HT3 receptor antagonist, 0.5 mg/kg), yohimbine (an alpha2-adrenoceptor antagonist, 0.15 mg/kg) or by efaroxan (an I1 imidazoline/alpha2-adrenoceptor antagonist, 1 mg/kg). In contrast, agmatine antinociception was not affected by i.p. treatment of animals with pindolol (a 5-HT1A/1B receptor antagonist, 1 mg/kg) or idazoxan (an I2 imidazoline/alpha2-adrenoceptor antagonist, 3 mg/kg). Likewise, the antinociception caused by agmatine was not affected by neonatal pre-treatment with capsaicin. Together, these results indicate that agmatine produces dose-related antinociception in several models of chemical pain through mechanisms that involve an interaction with opioid, serotonergic (i.e., through 5-HT2A and 5-HT3 receptors) and nitrergic systems, as well as via an interaction with alpha2-adrenoceptors and imidazoline I1 receptors.[Abstract] [Full Text] [Related] [New Search]