These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. Author: Taylor DR, Puig M, Darnell ME, Mihalik K, Feinstone SM. Journal: J Virol; 2005 May; 79(10):6291-8. PubMed ID: 15858013. Abstract: While many clinical hepatitis C virus (HCV) infections are resistant to alpha interferon (IFN-alpha) therapy, subgenomic in vitro self-replicating HCV RNAs (HCV replicons) are characterized by marked IFN-alpha sensitivity. IFN-alpha treatment of replicon-containing cells results in a rapid loss of viral RNA via translation inhibition through double-stranded RNA-activated protein kinase (PKR) and also through a new pathway involving RNA editing by an adenosine deaminase that acts on double-stranded RNA (ADAR1). More than 200 genes are induced by IFN-alpha, and yet only a few are attributed with an antiviral role. We show that inhibition of both PKR and ADAR1 by the addition of adenovirus-associated RNA stimulates replicon expression and reduces the amount of inosine recovered from RNA in replicon cells. Small inhibitory RNA, specific for ADAR1, stimulated the replicon 40-fold, indicating that ADAR1 has a role in limiting replication of the viral RNA. This is the first report of ADAR's involvement in a potent antiviral pathway and its action to specifically eliminate HCV RNA through adenosine to inosine editing. These results may explain successful HCV replicon clearance by IFN-alpha in vitro and may provide a promising new therapeutic strategy for HCV as well as other viral infections.[Abstract] [Full Text] [Related] [New Search]