These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss. Author: Taylor JF, Migaud H, Porter MJ, Bromage NR. Journal: Gen Comp Endocrinol; 2005 May 15; 142(1-2):169-85. PubMed ID: 15862561. Abstract: The effect of different photoperiod regimes and the subsequent influence of melatonin on growth and insulin-like growth factor-I (IGF-I) were assessed in juvenile rainbow trout. In Experiment 1, triplicate groups of all female underyearling rainbow trout were exposed to one of three photoperiods; simulated natural photoperiod (SNP), constant short-days (LD 8:16), or constant long-days (LD 18:6) from June to December 2000 under ambient water temperatures. Fish exposed to LD 18:6 grew to a significantly heavier mean weight than the other treatments. Regression analysis showed a strong correlation between circulating plasma IGF-I, growth rate and temperature. Furthermore, it was apparent that fish exposed to LD 18:6 expressed significantly higher circulating levels of IGF-I. In a second experiment, duplicate groups of all female yearling trout were exposed to one of three photoperiods; SNP, LD 8:16, or constant light (LL), with sub groups receiving either a slow-release melatonin implant (18 mg), sham implant or left intact (control). LL increased growth rate in controls, reaching a significantly greater weight than SNP or LD 8:16 photoperiods but did not affect circulating IGF-I levels. Melatonin implants reduced growth rate in all photoperiod treatments below that of their respective controls but again did not affect circulating IGF-I levels. No differences in growth rate were found in implanted fish between photoperiods suggesting that a diel cycle of melatonin is necessary for the perception of daylength. These results would indicate that extended photoperiods (LD 18:6) may cause direct photostimulation of growth through up-regulation of IGF-I production. In contrast, in the absence of a changing diel melatonin signal, growth appeared to be maintained by a possible underlying endogenous rhythm, which was phase advanced under LL, as such plasma IGF-I levels simply reflected growth rate rather than photostimulation of the somatotropic axis. Overall, these findings indicate that measuring plasma IGF-I may be a useful tool for studying environmental influences on growth in rainbow trout.[Abstract] [Full Text] [Related] [New Search]