These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy.
    Author: Cheng TH, Shih NL, Chen CH, Lin H, Liu JC, Chao HH, Liou JY, Chen YL, Tsai HW, Chen YS, Cheng CF, Chen JJ.
    Journal: J Biomed Sci; 2005; 12(1):123-33. PubMed ID: 15864745.
    Abstract:
    Endothelin-1 (ET-1) has been found to increase cardiac beta-myosin heavy chain (beta-MyHC) gene expression and induce hypertrophy in cardiomyocytes. ET-1 has been demonstrated to increase intracellular reactive oxygen species (ROS) in cardiomyocytes. The exact molecular mechanism by which ROS regulate ET-1-induced beta-MyHC gene expression and hypertrophy in cardiomyocytes, however, has not yet been fully described. We aim to elucidate the molecular regulatory mechanism of ROS on ET-1-induced beta-MyHC gene expression and hypertrophic signaling in neonatal rat cardiomyocytes. Following stimulation with ET-1, cultured neonatal rat cardiomyocytes were examined for 3H-leucine incorporation and beta-MyHC promoter activities. The effects of antioxidant pretreatment on ET-1-induced cardiac hypertrophy and mitogen-activated protein kinase (MAPKs) phosphorylation were studied to elucidate the redox-sensitive pathway in cardiomyocyte hypertrophy and beta-MyHC gene expression. ET-1 increased 3H-leucine incorporation and beta-MyHC promoter activities, which were blocked by the specific ET(A) receptor antagonist BQ-485. Antioxidants significantly reduced ET-1-induced 3H-leucine incorporation, beta-MyHC gene promoter activities and MAPK (extracellular signal-regulated kinase, p38, and c-Jun NH2 -terminal kinase) phosphorylation. Both PD98059 and SB203580 inhibited ET-1-increased 3H-leucine incorporation and beta-MyHC promoter activities. Co-transfection of the dominant negative mutant of Ras, Raf, and MEK1 decreased the ET-1-induced beta-MyHC promoter activities, suggesting that the Ras-Raf-MAPK pathway is required for ET-1 action. Truncation analysis of the beta-MyHC gene promoter showed that the activator protein-2 (AP-2)/specificity protein-1 (SP-1) binding site(s) were(was) important cis-element(s) in ET-1-induced beta-MyHC gene expression. Moreover, ET-1-induced AP-2 and SP-1 binding activities were also inhibited by antioxidant. These data demonstrate the involvement of ROS in ET-1-induced hypertrophic responses and beta-MyHC expression. ROS mediate ET-1-induced activation of MAPK pathways, which culminates in hypertrophic responses and beta-MyHC expression.
    [Abstract] [Full Text] [Related] [New Search]