These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene.
    Author: Thomas AV, Broers AD, Vandegaart HF, Desmecht DJ.
    Journal: Mol Immunol; 2006 Feb; 43(6):653-9. PubMed ID: 15869793.
    Abstract:
    Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal-transducing receptor. As the pig industry faces a unique array of related pathogens, it is anticipated that the genotype of swine TLR4 could be of crucial importance in future strategies aimed at improving genetic resistance to infectious diseases. In order to help in investigating TLR4 as a candidate disease-resistance gene in pigs, we established its genomic structure and produced sufficient flanking intronic sequences to enable simple PCR amplification of the coding portions of the gene. Expression in different porcine tissues was studied and showed splicing variations in mRNA sequences. The cDNA sequence for poTLR4 contains an open reading frame of 2526bp that codes for 841 aa, 98 and 568bp in the 5'- and 3'-UTRs, respectively. Overall, the general organization of porcine, human, murine, and avian TLR4 genes is quite similar: three exons with the third one very long. A high level of conservation of the size and the sequence, especially for the two last exons and particularly in the sequence corresponding to the LRRs and TIR domain, is observed between species. The important antimicrobial properties of these proteins may account for a conservative selection pressure on these TLR4 coding sequences. Several putative binding sites described in the human and murine promoter of TLR4 genes have been identified in the 5'-flanking region of poTLR4. Conversely, this region lacks a TATA box, consensus initiator sequences, or GC-rich regions. The basic sequence data gathered will allow the establishment of an inventory of naturally occurring variation in porcine TLR4, so that alleles can be tested for disease association studies.
    [Abstract] [Full Text] [Related] [New Search]