These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effective gaussian mixture learning for video background subtraction.
    Author: Lee DS.
    Journal: IEEE Trans Pattern Anal Mach Intell; 2005 May; 27(5):827-32. PubMed ID: 15875805.
    Abstract:
    Adaptive Gaussian mixtures have been used for modeling nonstationary temporal distributions of pixels in video surveillance applications. However, a common problem for this approach is balancing between model convergence speed and stability. This paper proposes an effective scheme to improve the convergence rate without compromising model stability. This is achieved by replacing the global, static retention factor with an adaptive learning rate calculated for each Gaussian at every frame. Significant improvements are shown on both synthetic and real video data. Incorporating this algorithm into a statistical framework for background subtraction leads to an improved segmentation performance compared to a standard method.
    [Abstract] [Full Text] [Related] [New Search]