These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The antagonism between 2-methyl-1,25-dihydroxyvitamin D3 and 2-methyl-20-epi-1,25-dihydroxyvitamin D3 in non-genomic pathway-mediated biological responses induced by 1alpha,25-dihydroxyvitamin D3 assessed by NB4 cell differentiation. Author: Miura D, Norman AW, Mizwicki MT, Fujishima T, Konno K, Kittaka A, Takayama H, Ishizuka S. Journal: J Steroid Biochem Mol Biol; 2005 Apr; 94(5):469-79. PubMed ID: 15876412. Abstract: We synthesized all eight possible A-ring diastereomers of 2-methyl substituted analogs of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and also all eight A-ring diastereomers of 2-methyl-20-epi-1alpha,25(OH)2D3. Their biological activities, especially the antagonistic effect on non-genomic pathway-mediated responses induced by 1alpha,25(OH)2D3 or its 6-s-cis-conformer analog, 1alpha,25(OH)2-lumisterol3, were assessed using an NB4 cell differentiation system. Antagonistic activity was observed for the 1beta-hydroxyl diastereomers, including 2beta-methyl-1beta,25(OH)2D3 and 2beta-methyl-3-epi-1beta,25(OH)2D3. Very interestingly, 2beta-methyl-3-epi-1alpha,25(OH)2D3 also antagonized the non-genomic pathway, despite its 1alpha-hydroxyl group. Other 1alpha-hydroxyl diastereomers did not show antagonistic activity. 20-epimerization diminished the antagonistic effect of all of these analogs on the non-genomic pathway. These findings suggested that the combination of the 2-methyl substitution of the A-ring and 20-epimerization of the side chain could alter the biological activities in terms of antagonism of non-genomic pathway-mediated biological response. Based on a previous report, 2-methyl substitution alters the equilibrium of the A-ring conformation between the alpha- and beta-chair conformers. The 2beta-methyl diastereomers, which exhibited antagonism on non-genomic pathway-mediated response, were considered to prefer the beta-conformer. Further examination to elucidate the relationship between the altered ligand shape and receptors interaction will be important for molecular level understanding of the mechanism of antagonism of the non-genomic pathway.[Abstract] [Full Text] [Related] [New Search]