These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter.
    Author: Quinlivan PA, Li L, Knappe DR.
    Journal: Water Res; 2005 Apr; 39(8):1663-73. PubMed ID: 15878039.
    Abstract:
    The overall objective of this research was to determine the effects of physical and chemical activated carbon characteristics on the simultaneous adsorption of trace organic contaminants and natural organic matter (NOM). A matrix of 12 activated carbon fibers (ACFs) with three activation levels and four surface chemistry levels (acid-washed, oxidized, hydrogen-treated, and ammonia-treated) was studied to systematically evaluate pore structure and surface chemistry phenomena. Also, three commercially available granular activated carbons (GACs) were tested. The relatively hydrophilic fuel additive methyl tertiary-butyl ether (MTBE) and the relatively hydrophobic solvent trichloroethene (TCE) served as micropollutant probes. A comparison of adsorption isotherm data collected in the presence and absence of NOM showed that percent reductions of single-solute TCE and MTBE adsorption capacities that resulted from the presence of co-adsorbing NOM were not strongly affected by the chemical characteristics of activated carbons. However, hydrophobic carbons were more effective adsorbents for both TCE and MTBE than hydrophilic carbons because enhanced water adsorption on the latter interfered with the adsorption of micropollutants from solutions containing NOM. With respect to pore structure, activated carbons should exhibit a large volume of micropores with widths that are about 1.5 times the kinetic diameter of the target adsorbate. Furthermore, an effective adsorbent should possess a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage/constriction as a result of NOM adsorption.
    [Abstract] [Full Text] [Related] [New Search]