These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: SO-3, a new O-superfamily conopeptide derived from Conus striatus, selectively inhibits N-type calcium currents in cultured hippocampal neurons.
    Author: Wen L, Yang S, Qiao H, Liu Z, Zhou W, Zhang Y, Huang P.
    Journal: Br J Pharmacol; 2005 Jul; 145(6):728-39. PubMed ID: 15880145.
    Abstract:
    Whole-cell currents in cultured hippocampal neurons were recorded to investigate the effects of SO-3, a new O-superfamily conopeptide derived from Conus striatus, on voltage-sensitive channels. SO-3 had no effect on voltage-sensitive sodium currents, delayed rectifier potassium currents, and transient outward potassium currents. Similar to the selective N-type calcium channel blocker omega-conotoxin MVIIA (MVIIA), SO-3 could concentration-dependently inhibit the high voltage-activated (HVA) calcium currents (I(Ca)). MVIIA(3 microM), 10 microM nimodipine, and 0.5 microM omega-agatoxin IVA (Aga) could selectively block the N-, L-, and P/Q-type I(Ca), which contributed approximately 32, approximately 38, and approximately 21% of the HVA currents in hippocampal neurons, respectively. About 31% of the total HVA currents were inhibited by 3 microM SO-3. SO-3 (3 microM) and 3 microM MVIIA inhibited the overlapping components of HVA currents, whereas no overlapping component was inhibited by 3 microM SO-3 and 10 microM nimodipine, or by 3 microM SO-3 and 0.5 microM Aga. Also, 3 microM SO-3 had no effect on R-type currents. SO-3 had less inhibitory effects on non-N-type HVA currents than MVIIA at higher concentrations (30 and 100 microM). The inhibitory effects of SO-3 and MVIIA on HVA currents were almost fully reversible. However, the recovery from block by MVIIA was more rapid than recovery from block by SO-3. It is concluded that SO-3 is a new omega-conotoxin selectively targeting N-type voltage-sensitive calcium channels. Considering the significance of N-type calcium channels for pain transduction, SO-3 may have therapeutic potential as a novel analgesic agent.
    [Abstract] [Full Text] [Related] [New Search]