These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: "Parallel" and "antiparallel tail-clamps" increase the efficiency of triplex formation with structured DNA and RNA targets.
    Author: Nadal A, Eritja R, Esteve T, Pla M.
    Journal: Chembiochem; 2005 Jun; 6(6):1034-42. PubMed ID: 15880676.
    Abstract:
    Sequence-specific triple-helix structures can be formed by parallel and antiparallel DNA clamps interacting with single-stranded DNA or RNA targets. Single-stranded nucleic acid molecules are known to adopt secondary structures that might interfere with intermolecular interactions. We demonstrate the correlation between a secondary structure involving the target--a stable stem predicted by in silico folding and experimentally confirmed by thermal stability and competition analyses--and an inhibitory effect on triplex formation. We overcame structural impediments by designing a new type of clamp: "tail-clamps". A combination of gel-shift, kinetic analysis, UV thermal melting and thermodynamic techniques was used to demonstrate that tail-clamps efficiently form triple helices with a structured target sequence. The performance of parallel and antiparallel tail-clamps was compared: antiparallel tail-clamps had higher binding efficiencies than parallel tail-clamps both with structured DNA and RNA targets. In addition, the reported triplex-stabilizing property of 8-aminopurine residues was confirmed for tail-clamps. Finally, we discuss the possible use of this improved triplex technology as a new tool for applications in molecular biology.
    [Abstract] [Full Text] [Related] [New Search]