These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of PTH synthesis and secretion relevant to the management of secondary hyperparathyroidism in chronic kidney disease.
    Author: Silver J, Levi R.
    Journal: Kidney Int Suppl; 2005 Jun; (95):S8-12. PubMed ID: 15882315.
    Abstract:
    Regulation of PTH synthesis and secretion relevant to the management of secondary hyperparathyroidism in chronic kidney disease. Small decreases in serum Ca(++) and more prolonged increases in serum phosphate (P) stimulate the parathyroid (PT) to secrete parathyroid hormone (PTH), while 1,25(OH)(2)-vitamin D(3) decreases PTH synthesis and secretion. A prolonged decrease in serum Ca(++) and 1,25(OH)(2)D(3), or increase in serum P, such as in patients with chronic renal failure, leads to the appropriate secondary increase in serum PTH. This secondary hyperparathyroidism involves increases in PTH gene expression, synthesis, and secretion, and, if chronic, to proliferation of the parathyroid cells. A low serum Ca(++) leads to an increase in PTH secretion, PTH mRNA stability, and parathyroid cell proliferation. Pi also regulates the parathyroid in a similar manner. The effect of Ca(++) on the parathyroid is mediated by a membrane Ca(2+) receptor (CaR). 1,25(OH)(2)D(3) decreases PTH gene transcription. Ca(2+) and P regulate the PTH gene post-transcriptionally by regulating the binding of parathyroid cytosolic proteins, trans factors, to a defined cis sequence in the PTH mRNA 3'-untranslated region (UTR), thereby determining the stability of the transcript. The parathyroid trans factors and cis elements have been defined.
    [Abstract] [Full Text] [Related] [New Search]