These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(III) in BioDeNOx reactors.
    Author: Van Der Maas P, Peng S, Klapwijk B, Lens P.
    Journal: Environ Sci Technol; 2005 Apr 15; 39(8):2616-23. PubMed ID: 15884357.
    Abstract:
    Reduction of EDTA-chelated Fe(III) is one of the core processes in the BioDeNOx process, a chemically enhanced technique for biological NOx removal from industrial flue gases. The capacity of Escherichia coli, three mixed cultures from full scale methanogenic granular sludge reactors, one denitrifying sludge, and a BioDeNOx sludge to reduce Fe(III)EDTA- (25 mM) was determined at 37 and 55 degrees C using batch experiments. Addition of catalytic amounts of sulfide greatly accelerated Fe(III)EDTA- reduction, indicating that biological Fe(III)EDTA- reduction is not a direct, enzymatic conversion but an indirect reduction with involvement of an electron-mediating compound, presumably polysulfides. It is suggested that not thermophilic dissimilatory iron-reducing bacteria but reducers of elemental sulfur or polysulfides are primarily involved in the reduction of EDTA-chelated Fe(III) in BioDeNOx reactors.
    [Abstract] [Full Text] [Related] [New Search]