These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: RNA helicases: regulators of differentiation.
    Author: Abdelhaleem M.
    Journal: Clin Biochem; 2005 Jun; 38(6):499-503. PubMed ID: 15885226.
    Abstract:
    RNA helicases are highly conserved enzymes that utilize the energy derived from NTP hydrolysis to modulate the structure of RNA. RNA helicases participate in all biological processes that involve RNA, including transcription, splicing and translation. Based on the sequence of the helicase domain, they are classified into families, such as DDX and DHX families of human RNA helicases. The specificity of RNA helicases to their targets is likely due to several factors, such as the sequence, interacting molecules, subcellular localization and the expression pattern of the helicases. There are several examples of the involvement of RNA helicases in differentiation. Human DDX3 has two closely related genes designated DDX3Y and DDX3X, which are localized to the Y and X chromosomes, respectively. DDX3Y protein is specifically expressed in germ cells and is essential for spermatogenesis. DDX25 is another RNA helicase which has been shown to be required for spermatogenesis. DDX4 shows specific expression in germ cells. The Drosophila ortholog of DDX4, known as vasa, is required for the formation of germ cells and oogenesis by a mechanism that involves regulating the translation of mRNAs essential for differentiation. Abstrakt is the Drosphila ortholog of DDX41, which has been shown to be involved in visual and CNS system development. DDX5 (p68) and its related DDX17 (p72) have also been implicated in organ/tissue differentiation. The ability of RNA helicases to modulate the structure and thus availability of critical RNA molecules for processing leading to protein expression is the likely mechanism by which RNA helicases contribute to differentiation.
    [Abstract] [Full Text] [Related] [New Search]