These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conjugated linoleic acid deteriorates insulin resistance in obese/diabetic mice in association with decreased production of adiponectin and leptin.
    Author: Ohashi A, Matsushita Y, Kimura K, Miyashita K, Saito M.
    Journal: J Nutr Sci Vitaminol (Tokyo); 2004 Dec; 50(6):416-21. PubMed ID: 15895517.
    Abstract:
    Dietary supplementation of conjugated linoleic acids (CLA) is known to have some beneficial effects such as anti-carcinogenic and anti-obesity effects in several animal species, while it also induces insulin resistance and fatty liver, especially in mice. To explore the possible factors responsible for the CLA-induced insulin resistance, we examined the plasma and mRNA expression levels of several adipocytokines, which are likely involved in the regulation of insulin sensitivity, in normal C5 7BL, mildly obese/diabetic KK and morbidly obese/diabetic KKAy mice. Feeding a diet supplemented with 0.5%, CLA oil consisting of 30.5/% c9, t11-CLA and 28.9% t10, c12-CLA for 4 wk resulted in a decrease in white adipose tissue (WAT), an increase in liver weight with excess accumulation of triglyceride, and insulin resistance associated with hyperglycemia and hyperinsulinemia. The plasma and WAT mRNA levels of leptin were higher in KK and KKAy mice than C57BI. mice, whereas those of adiponectin were higher in C5 7BL mice. CLA-feeding decreased the levels of leptin, adiponectin and resistin, especially in KK and KKAy mice. In contrast, tumor necrosis factor-alpha (TNFalpha) mRNA levels were higher in KK and KKAy mice than C57BL mice, and were increased by CLA feeding. The present results thus indicate that CLA feeding promotes insulin resistance in obese/diabetic mice by at least inverse regulation of leptin and adiponectin, and TNFalpha, adipocytokines known to either ameliorate or deteriorate insulin sensitivity, respectively.
    [Abstract] [Full Text] [Related] [New Search]