These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antisense gene delivered by an adenoassociated viral vector inhibits iron uptake in human intestinal cells: potential application in hemochromatosis.
    Author: Ezquer F, Núñez MT, Israel Y.
    Journal: Biochem Pharmacol; 2005 Jun 01; 69(11):1559-66. PubMed ID: 15896335.
    Abstract:
    Hereditary hemochromatosis (HH) is a condition in which intestinal iron absorption is greatly elevated. Present treatment is weekly phlebotomy, affecting quality of life and leading to recurrent infections. The iron transporter divalent metal transporter-1 (DMT-1) of enterocytes is responsible for iron uptake from the intestinal lumen; iron is further extruded into the blood by the basolateral transporter ferroportin-1. A therapeutic approach for HH could start with a long-term reduction of iron transport by reduction of DMT-1 levels. We designed an AAV vector coding for a short antisense RNA (AAV-DMT-1-AS) against DMT-1, which reduced iron uptake by 50-60% in human intestinal cells (Caco-2). At low infection levels, DMT-1 mRNA virtually disappeared, suggesting RNAi-like and/or RNase H antisense effects. DMT-1 mRNA levels returned to normal at higher infection levels, indicating that an additional mechanism of mRNA occupation, able to block DMT-1 translation and to avoid feedback regulation by iron responsive elements (IRE), also exists. Cell morphology was normal in all cases and no increases in the interferon-related responses, measured by (a) 2'-5' A oligo synthetase (b) IFITM1 and (c) ISGF3gamma mRNA levels, were observed. Studies presented herein indicate that enterocyte targeting with a gene coding for a short antisense against iron transport blocks enterocyte iron uptake, which may have therapeutic value.
    [Abstract] [Full Text] [Related] [New Search]