These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen.
    Author: Pawlak J, Brito V, Küppers E, Beyer C.
    Journal: Brain Res Mol Brain Res; 2005 Jul 29; 138(1):1-7. PubMed ID: 15896872.
    Abstract:
    Estrogen influences neuronal development and a broad spectrum of neural functions. In addition, several lines of evidence suggest a role as neuroprotective factor for estrogen in the CNS. Neuroprotection can result from direct estrogen-neuron interactions or be mediated indirectly involving the regulation of physiological properties of nonneuronal cells, such as astrocytes and microglia. Increased l-glutamate levels are associated with neurotoxic and neurodegenerative processes in the brain. Thus, the removal of l-glutamate from the extracellular space by astrocytes through the astroglial glutamate transporters GLT-1 and GLAST appears essential for maintaining a homeostatic milieu for neighboring neurons. We have therefore studied the influence of 17beta-estradiol on l-glutamate metabolism in cultured astrocytes from the neonate mouse midbrain using quantitative RT-PCR and Western blotting for both transporters as well as functional l-glutamate uptake studies. The administration of estrogen significantly increased the expression of GLT-1 and GLAST on the mRNA and protein level. Likewise, specific l-glutamate uptake by astrocytes was elevated after estrogen exposure and mimicked by dbcAMP stimulation. Induction of transporter expression and l-glutamate uptake were sensitive to ICI 182,780 treatment suggesting estrogen action through nuclear estrogen receptors. These findings indicate that estrogen can prevent l-glutamate-related cell death by decreasing extracellular l-glutamate levels through an increased l-glutamate uptake capacity by astrocytes.
    [Abstract] [Full Text] [Related] [New Search]