These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Segmental heterogeneity in the mechanism of sodium nitroprusside-induced relaxation in ovine pulmonary artery. Author: Sathishkumar K, Ross RG, Bawankule DU, Sardar KK, Prakash VR, Mishra SK. Journal: J Cardiovasc Pharmacol; 2005 Jun; 45(6):491-8. PubMed ID: 15897774. Abstract: Segmental heterogeneity in relaxation response to nitric oxide (NO) was examined using NO donor sodium nitroprusside (SNP) in second- (medium) and fourth-generation (small) ovine isolated intralobar pulmonary arteries. In vessels precontracted with serotonin, NO donors SNP and S-nitroso-N-acetylpenicillamine (SNAP) were more potent in relaxing medium, in comparison to the small, arteries. Soluble guanylyl cyclase (sGC) inhibitor [1,2,4]oxadiazolo-[4,3-a]quinoxaline-1-one (ODQ 3 microM) caused a profound inhibition of SNP relaxation in small as compared with medium-sized arteries. However, both basal and SNP (10 microM)-stimulated intracellular cyclic guanosine monophosphate (cGMP) content was identical in these 2 arterial segments. The Na,K-ATPase inhibitor ouabain (1 microM) had a marked inhibitory effect on SNP-mediated relaxation in both segments. There was no segmental difference in SNP (10 microM)-stimulated plasma membrane Na,K-ATPase activity and ouabain-sensitive Rb-uptake. 4-AP (1 mM), a relatively selective inhibitor of Kv channels, decreased the potency of SNP relaxation by about 10-fold in the medium-sized vessels. On the other hand, 4-AP was without effect on the vasodilator potency of SNP in small vessels. Interestingly, in the presence of 4-AP, SNP was equipotent in dilating both medium (pD2 = 5.80 +/- 0.07; Emax = 84 +/- 1.6%, n = 7) and small (pD2 = 5.74 +/- 0.15; Emax = 83 +/- 2.5%, n = 7) pulmonary arteries. In conclusion, the results of the present study suggest that Kv channels determine the segmental heterogeneity of NO-mediated relaxation in ovine pulmonary artery.[Abstract] [Full Text] [Related] [New Search]