These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Example of fatty acid-loaded lipoplex in enhancing in vitro gene transfer efficacies of cationic amphiphile. Author: Majeti BK, Karmali PP, Madhavendra SS, Chaudhuri A. Journal: Bioconjug Chem; 2005; 16(3):676-84. PubMed ID: 15898737. Abstract: Herein, we report on the design and synthesis of a novel nontoxic cationic amphiphile N,N-di-n-tetradecyl-N-[2-[N',N'-bis(2-hydroxyethyl)amino]ethyl]-N-(2-hydroxyethyl)ammonium chloride (lipid 1) whose in vitro gene transfer efficacies in CHO, COS-1, MCF-7, and HepG2 cells are remarkably enhanced when used in combination with 30 mole percent added myristic acid. Reporter gene expression assay using p-CMV-SPORT-beta-gal reporter gene revealed poor gene transfer properties of the cationic liposomes of lipid 1 and cholesterol (colipid). However, the in vitro gene delivery efficacies of lipid 1 were found to be remarkably enhanced when the cationic liposomes of lipid 1 and cholesterol were prepared in the presence of 30 mole percent added myristic acid (with respect to lipid 1) as the third liposomal ingredient. The whole cell histochemical X-gal staining of representative CHO cells further confirmed the significantly enhanced gene transfer properties of the fatty acid-loaded cationic liposomes of lipid 1 and cholesterol. Electrophoretic gel patterns in the gel mobility shift assay supports the notion that better DNA release from fatty acid lipoplexes might play a role in their enhanced gene transfer properties. In addition, such myristic acid-loaded lipoplexes of lipid 1 were also found to be serum-compatible up to 30% added serum. Taken together, our present findings demonstrate that the transfection efficacies of fatty acid-loaded lipoplexes are worth evaluating particularly when traditional cationic liposomes prepared with either cholesterol or DOPE colipids fail to transfect cultured cells.[Abstract] [Full Text] [Related] [New Search]