These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord.
    Author: Jimenez Hamann MC, Tator CH, Shoichet MS.
    Journal: Exp Neurol; 2005 Jul; 194(1):106-19. PubMed ID: 15899248.
    Abstract:
    The administration of growth factors (GFs) for treatment of experimental spinal cord injury (SCI) has shown limited benefits. One reason may be the mode of delivery to the injury site. We have developed a minimally invasive and safe drug delivery system (DDS) consisting of a highly concentrated collagen solution that can be injected intrathecally at the site of injury providing localized delivery of GFs. Using the injectable DDS, epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2) were co-delivered in the subarachnoid space of Sprague-Dawley rats. The in vivo distribution of EGF and FGF-2 in both injured and uninjured animals was monitored by immunohistochemistry. Although significant differences in the distribution of EGF and FGF-2 in the spinal cord were evident, localized delivery of the GFs resulted in significantly less cavitation at the lesion epicenter and for at least 720 mum caudal to it compared to control animals without the DDS. There was also significantly more white matter sparing at the lesion epicenter in animals receiving the GFs compared to control animals. Moreover, at 14 days post-injection, delivery of the GFs resulted in significantly greater ependymal cell proliferation in the central canal immediately rostral and caudal to the lesion edge compared to controls. These results demonstrate that the injectable DDS provides a new paradigm for localized delivery of bioactive therapeutic agents to the injured spinal cord.
    [Abstract] [Full Text] [Related] [New Search]