These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: BCR-ABL gene amplification and overexpression in a patient with chronic myeloid leukemia treated with imatinib.
    Author: Gadzicki D, von Neuhoff N, Steinemann D, Just M, Büsche G, Kreipe H, Wilkens L, Schlegelberger B.
    Journal: Cancer Genet Cytogenet; 2005 Jun; 159(2):164-7. PubMed ID: 15899391.
    Abstract:
    Imatinib mesylate was designed as an inhibitor targeting the BCR-ABL tyrosine kinase, the molecular counterpart of the Philadelphia translocation t(9;22)(q34;q11). We report on a patient with chronic myeloid leukemia (CML) undergoing acceleration during imatinib treatment. Cytogenetic analysis revealed four different cell populations: 46,XX,t(9;22)(q34;q11),der(18)t(2;18)(p11;p11)[1]/47,idem,i(17)(q10),-der(18)t(2;18),+der(22)t(9;22)[1]/46,idem,-t(9;22),der(9)t(9;22),ider(22)t(9;22)[12]/ 47,idem,-t(9;22),der(9)t(9;22),+22,ider(22)t(9;22)x2[1]. FISH analysis confirmed the presence of these four clones. Moreover, 49% of the interphase nuclei contained either one or two clustered fusion signals, indicating a low-level amplification of the BCR-ABL fusion gene. With quantitative real-time RT-PCR, a BCR-ABL/G6PDH ratio of 0.8 was determined, which is comparable to that measured in the K562 cell line with a known BCR-ABL amplification and which is increased by more than about 60-fold compared to a CML at diagnosis with >80% Philadelphia-positive cells. We give further evidence that the genomic BCR-ABL amplification results in an increased level of BCR-ABL transcript linking two potent mechanisms of resistance against imatinib treatment.
    [Abstract] [Full Text] [Related] [New Search]