These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappaB and ERK/MAPK. Author: Chen ZH, Na HK, Hurh YJ, Surh YJ. Journal: Toxicol Appl Pharmacol; 2005 Oct 01; 208(1):46-56. PubMed ID: 15901486. Abstract: Catechol estrogens, the hydroxylated metabolites of 17beta-estradiol (E2), have been considered to be implicated in estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE2), an oxidized metabolite of E2 formed preferentially by cytochrome P450 1B1, reacts with DNA to form depurinating adducts thereby exerting genotoxicity and carcinogenicity. 4-OHE2 undergoes 2-electron oxidation to quinone via semiquinone, and during this process, reactive oxygen species (ROS) can be generated to cause DNA damage and cell death. In the present study, 4-OHE2 was found to elicit cytotoxicity in cultured human mammary epithelial (MCF-10A) cells, which was blocked by the antioxidant trolox. MCF-10A cells treated with 4-OHE2 exhibited increased intracellular ROS accumulation and 8-oxo-7,8-dihydroxy-2'-deoxyguanosine formation, and underwent apoptosis as determined by poly(ADP-ribose)polymerase cleavage and disruption of mitochondrial transmembrane potential. The redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) was transiently activated by 4-OHE2 treatment. Cotreatment of MCF-10A cells with the NF-kappaB inhibitor, L-1-tosylamido-2-phenylethyl chloromethyl ketone, exacerbated 4-OHE2-induced cell death. 4-OHE2 also caused transient activation of extracellular signal-regulated protein kinases (ERK) involved in transmitting cell survival or death signals. A pharmacological inhibitor of ERK aggravated the 4-OHE2-induced cytotoxicity, supporting the pivotal role of ERK in protecting against catechol estrogen-induced oxidative cell death.[Abstract] [Full Text] [Related] [New Search]