These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: L-NMMA in brain microcirculation of mice is inhibited by blockade of cyclooxygenase and by superoxide dismutase.
    Author: Rosenblum WI, Nishimura H, Nelson GH.
    Journal: Am J Physiol; 1992 May; 262(5 Pt 2):H1343-9. PubMed ID: 1590436.
    Abstract:
    As previously reported, NG-monomethyl-L-arginine (L-NMMA) constricted pial arterioles, inhibited dilation of pial arterioles by acetylcholine (ACh) or L-arginine (L-Arg), and enhanced platelet adhesion/aggregation at sites of endothelial damage. However, all of these effects were inhibited by local application of 20 micrograms/ml indomethacin (Indo). When 100 micrograms/ml acetylsalicylic acid were used instead of Indo, the acid also blocked the effects of L-NMMA. Superoxide dismutase (SOD; 50 U/ml) blocked the constriction produced by L-NMMA and also blocked the constriction produced by N omega-nitro-L-arginine (NNA). SOD also prevented L-NMMA from blocking dilation by ACh. SOD itself had no effect on diameter or on the response to ACh, norepinephrine, or BaCl2. The effects of L-NMMA and of Indo were also selective. Thus L-NMMA did not inhibit dilation by prostacyclin or bradykinin, and Indo did not inhibit dilation by prostacyclin. Indo did not interfere with the ability of arginase to enhance platelet adhesion/aggregation or with the ability of ACh or L-Arg to inhibit adhesion/aggregation. We conclude that in mouse cerebral microcirculation the ability of L-NMMA and NNA to constrict arterioles, the ability of L-NMMA to inhibit dilation by ACh or L-Arg and the ability of L-NMMA to enhance platelet adhesion/aggregation are all related to interference with phenomena dependent on "classical" endothelium-derived relaxing factor (EDRFACh). However, in this preparation the action of L-NMMA or NNA may not be due to competitive inhibition of the enzyme producing EDRFACh from L-Arg. Rather, L-NMMA and NNA appear to activate cyclooxygenase with resultant production of superoxide, which inactivates EDRFACh.
    [Abstract] [Full Text] [Related] [New Search]