These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pb2+ exposure alters the lens alpha A-crystallin protein profile in vivo and induces cataract formation in lens organ culture.
    Author: Neal R, Aykin-Burns N, Ercal N, Zigler JS.
    Journal: Toxicology; 2005 Aug 15; 212(1):1-9. PubMed ID: 15905016.
    Abstract:
    Epidemiological data supports lead exposure as a risk factor for cataract development. Previous studies which demonstrated oxidative imbalances in the lens following in vivo Pb(2+) exposure support the idea that lead exposure can alter the lens biochemical homeostasis which may ultimately lead to loss of lens clarity with time. alpha-Crystallin, a major lens structural protein and molecular chaperone, undergoes various post-translational modifications upon aging which may contribute to decreased chaperone function and contribute to loss of lens clarity. This study evaluated the impact of 5 weeks of oral Pb(2+) exposure (peripheral Pb(2+) level approximately 30 microg/dL) on the alphaA-crystallin protein profile of the lens from Fisher 344 rats. Decreases in relative protein spot intensity of more acidic forms of alphaA- and betaA(4)-crystallin and of truncated forms of alphaA-crystallin were noted. This data indicates that changes in post-translational processing of crystallins do occur in vivo following short courses of clinically relevant Pb(2+)-exposure. In addition, organ culture of lenses from 4.5-month-old rats in 5 microM Pb(2+) resulted in opacities, demonstrating that lead is toxic to the lens and can induce a loss of lens clarity.
    [Abstract] [Full Text] [Related] [New Search]