These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of canola oil dilution on anhydrous milk fat crystallization and fractionation behavior. Author: Wright AJ, Batte HD, Marangoni AG. Journal: J Dairy Sci; 2005 Jun; 88(6):1955-65. PubMed ID: 15905425. Abstract: Blends of anhydrous milk fat (AMF) and canola oil (CO) were cooled from 35 to 5 degrees C at 0.1 degrees C/min, held for 24 h, and centrifuged to separate the liquid and crystalline fractions. The blends' crystallization behaviors and microstructures depended on the level of CO present. Onset and half times of crystallization reflected a slower crystallization mechanism at higher levels of CO dilution. These differences were accompanied by a change in microstructure from large spherulites to smaller particles. The biggest change occurred between the 1:4 and 1:5 blends. Canola oil dilution also influenced the polymorphism of milk fat. Whereas only the beta' polymorph was observed in the crystallized 1:2 blend, the beta polymorph predominated in the 1:8 blend. Some solubilization of AMF solids into CO was observed. This increased gradually with increasing CO concentration. Compositional analysis revealed the exchange of AMF and CO species between the liquid and crystalline fractions. The crystalline fractions were slightly enriched in AMF triacylglycerols, particularly with the more dilute blends (1:7 and 1:8). Large amounts of oil were trapped in the crystalline fractions, particularly for the concentrated AMF:CO blends where the beta' crystals and spherulitic microstructures were observed. Although the solid fat content profiles of the fractionated blends were marginally higher than those of the starting blends, the samples were very soft and oily. This strategy of using CO to fractionate milk fat was limited by the poor separation of solids and liquid during centrifugation.[Abstract] [Full Text] [Related] [New Search]