These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Half-of-the-sites binding of reactive intermediates and their analogues to 4-oxalocrotonate tautomerase and induced structural asymmetry of the enzyme.
    Author: Azurmendi HF, Miller SG, Whitman CP, Mildvan AS.
    Journal: Biochemistry; 2005 May 31; 44(21):7725-37. PubMed ID: 15909987.
    Abstract:
    4-Oxalocrotonate tautomerase (4-OT), a homohexameric enzyme, converts the unconjugated enone, 2-oxo-4-hexenedioate (1), to the conjugated enone, 2-oxo-3-hexenedioate (3), via a dienolic intermediate, 2-hydroxymuconate (2). Pro-1 serves as the general base, and both Arg-11 and Arg-39 function in substrate binding and catalysis in an otherwise hydrophobic active site. Although 4-OT exhibits hyperbolic kinetics and no structural asymmetry either by X-ray or by NMR, inactivation by two affinity labels showed half-site stoichiometry [Stivers, J. T., et al. (1996) Biochemistry 35, 803-813; Johnson, W. H., Jr., et al. (1997) Biochemistry 36, 15724-15732], and titration of the R39Q mutant with cis,cis-muconate showed negative cooperativity [Harris, T. K., et al. (1999) Biochemistry 38, 12343-12357]. To test for anticooperativity during catalysis, 4-OT was titrated with equilibrium mixtures (> or = 81% product) of the reactive dicarboxylate or monocarboxylate intermediates, 2 or 2-hydroxy-2,4-pentadienoate (4), respectively, in three types of NMR experiments: two-dimensional 1H-15N HSQC titrations of backbone NH and of Arg N epsilonH resonances and one-dimensional 15N NMR titrations of Arg N epsilon resonances. All titrations showed substoichiometric binding of the equilibrium mixtures to 3 +/- 1 sites per hexamer with apparent dissociation constants comparable to the Km values of the intermediates. Compound 4 also bound 1 order of magnitude less tightly at another site, suggesting negative cooperativity. Consistent with negative cooperativity, asymmetry of the resulting complexes at saturating levels of 2 and 4 is indicated by splitting of the backbone NH resonances of 11 residues and 10 residues of 4-OT, respectively. The dicarboxylate competitive inhibitor, (2E)-fluoromuconate (5), with a KI of 45 +/- 7 microM, also exhibited substoichiometric binding to 3 +/- 1 sites per hexamer, with a KD of 25 +/- 18 microM, and splitting of the backbone NH resonance of L8. The monocarboxylate inhibitors (2E)- (6) and (2Z)-2-fluoro-2,4-pentadienoate (7) showed much weaker binding (KD = 3.1 +/- 1.3 mM), as well as splitting of two and five backbone NH resonances, respectively, indicating asymmetry of the complexes. The N epsilon resonances of both Arg-11 and Arg-39 were shifted downfield, and that of Pro-1N was broadened by all ligands, consistent with the major catalytic roles of these residues. Structural pathways for the site-site interactions which result in negative cooperativity are proposed on the basis of the X-ray structures of free and affinity-labeled 4-OT. Selective resonance broadenings induced by the binding of inactive analogues and active intermediates indicate residues which may be mobilized during reversible ligand binding and during catalysis, respectively.
    [Abstract] [Full Text] [Related] [New Search]