These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell division theory and individual-based modeling of microbial lag: part II. Modeling lag phenomena induced by temperature shifts. Author: Dens EJ, Bernaerts K, Standaert AR, Kreft JU, Van Impe JF. Journal: Int J Food Microbiol; 2005 Jun 15; 101(3):319-32. PubMed ID: 15913823. Abstract: This paper is the second in a series of two, and studies microbial lag in cell number and/or biomass measurements caused by temperature changes with an individual-based modeling approach. For this purpose, the theory of cell division, as discussed in the first part of this series of research papers, was implemented in the individual-based modeling framework BacSim. Simulations of this model are compared with experimental data of Escherichia coli, growing in an aerated, glucose-rich medium and subjected to sudden temperature shifts. The premise of a constant cell volume under changing temperature conditions predicts no lag in cell numbers after the shift, in contrast to the experimental observations. Based on literature research, two biological mechanisms that could be responsible for the observed lag phenomena are proposed. The first assumes that the average cell volume depends on temperature while the second assumes that a lag in biomass growth occurs after the temperature shift. For a lag in cell number caused by an increased average cell volume, the cell biomass always increases at the maximal rate. Therefore, cells are evidently not stressed and do not have to adapt to the new conditions, as opposed to a lag in biomass growth. Implementation and simulation of both mechanisms are found to describe the experimental observations equally well. Therefore, further research is needed to distinguish between the two mechanisms. This can be done by observing, in addition to cell numbers, a measure for the average cell volumes. In conclusion, the individual-based modeling approach is a good methodology to investigate and test biological theories and assumptions. Also, based on the simulations, suggestions for further experimental observations can be made.[Abstract] [Full Text] [Related] [New Search]