These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of midazolam and its major metabolite 1'-hydroxymidazolam by high-performance liquid chromatography-electrospray mass spectrometry in plasma from children.
    Author: Muchohi SN, Ward SA, Preston L, Newton CR, Edwards G, Kokwaro GO.
    Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Jul 05; 821(1):1-7. PubMed ID: 15914101.
    Abstract:
    We have developed a sensitive, selective and reproducible reversed-phase high-performance liquid chromatography method coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) for the simultaneous quantification of midazolam (MDZ) and its major metabolite, 1'-hydroxymidazolam (1'-OHM) in a small volume (200 microl) of human plasma. Midazolam, 1'-OHM and 1'-chlordiazepoxide (internal standard) were extracted from alkalinised (pH 9.5) spiked and clinical plasma samples using a single step liquid-liquid extraction with 1-chlorobutane. The chromatographic separation was performed on a reversed-phase HyPURITY Elite C18 (5 microm particle size; 100 mm x 2.1mm i.d.) analytical column using an acidic (pH 2.8) mobile phase (water-acetonitrile; 75:25% (v/v) containing formic acid (0.1%, v/v)) delivered at a flow-rate of 200 microl/min. The mass spectrometer was operated in the positive ion mode at the protonated-molecular ions [M+l]+ of parent drug and metabolite. Calibration curves in spiked plasma were linear (r2 > or = 0.99) from 15 to 600 ng/ml (MDZ) and 5-200 ng/ml (1'-OHM). The limits of detection and quantification were 2 and 5 ng/ml, respectively, for both MDZ and 1'-OHM. The mean relative recoveries at 40 and 600 ng/ml (MDZ) were 79.4+/-3.1% (n = 6) and 84.2+/-4.7% (n = 8), respectively; for 1'-OHM at 30 and 200 ng/ml the values were 89.9+/-7.2% (n = 6) and 86.9+/-5.6% (n = 8), respectively. The intra-assay and inter-assay coefficients of variation (CVs) for MDZ were less than 8%, and for 1'-OHM were less than 13%. There was no interference from other commonly used antimalarials, antipyretic drugs and antibiotics. The method was successfully applied to a pharmacokinetic study of MDZ and 1'-OHM in children with severe malaria and convulsions following administration of MDZ either intravenously (i.v.) or intramuscularly (i.m.).
    [Abstract] [Full Text] [Related] [New Search]