These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro gene transfer efficacies of N,N-dialkylpyrrolidinium chlorides: a structure-activity investigation.
    Author: Majeti BK, Karmali PP, Reddy BS, Chaudhuri A.
    Journal: J Med Chem; 2005 Jun 02; 48(11):3784-95. PubMed ID: 15916430.
    Abstract:
    Inspired by the previously reported superior gene transfer efficacies of amine headgroup-containing cationic lipids to their hydroxy counterparts, in the present structure-activity investigation we have compared the relative in vitro gene transfer efficacies of eight newly synthesized structural analogues of our previously reported lipids 1-4, namely the four 3,4-diaminopyrrolidinium chloride structural analogues (lipids 9-12, Chart 1) and the N-BOC-protected precursors of these amine analogues (lipids 5-8, Chart 1) with our previously reported lipids 1-4 (Chart 1) in five cultured cell lines. In contrast to the above-mentioned earlier reports, except for the superior or comparable transfection efficacies of the diaminopyrrolidinium lipids with distearyl and stearyloleyl chains (lipid 11 and 12 respectively, Chart 1) in MCF-7 and HEK293T cells, the relative transfection efficacies of the other diamino analogues were found to be much lower than their dihydroxy counterparts. The results of the DNase I sensitivity assays indicate that enhanced degradation of DNA associated with lipids 9-12 by cellular DNase I might play an important role behind their seriously compromised transfection efficacies. In addition, the present structure-activity investigation revealed a strikingly cell tropic transfection behavior of lipid 6 (Chart 1). While lipids 5, 7, and 8 were found to be either poor or essentially incompetent in transfecting all the five cells, lipid 6 was remarkably efficacious in transfecting kidney cells (COS-1 and HEK293T cells) at lipid:DNA charge ratios 3:1 and 1:1 when used in combination with equimolar amounts of DOPE and DOPC.
    [Abstract] [Full Text] [Related] [New Search]