These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Progesterone inhibits gallbladder motility through multiple signaling pathways.
    Author: Kline LW, Karpinski E.
    Journal: Steroids; 2005 Aug; 70(9):673-9. PubMed ID: 15916787.
    Abstract:
    Progesterone (P) has an inhibitory effect on the contractility of gastrointestinal smooth muscle, including the gallbladder. Since P levels are elevated during pregnancy, a biliary stasis may develop during pregnancy that is characterized by an increase in the fasting and residual volumes and by a decrease in emptying capacity. This study investigates the effect of P and two metabolites on contraction in guinea pig gallbladder strips. P induced a concentration-dependent relaxation in guinea pig gallbladder strips precontracted with cholecystokinin octapeptide (CCK). Pretreatment of gallbladder strips with P (50 microM) also reduced the amount of CCK-induced tension. Nifedipine (1 microM) produced a similar effect. Pretreatment of the strips with PKA inhibitor 14--22 amide myristolated (180 nM) or the PKG inhibitor KT5823 (1.2 microM) either separately or in combination significantly reduced the amount of P-induced relaxation. Rp-cAMPs (0.1mM) or H-89 (10 microM) separately or in combination significantly reduced the P-effect; however, the combination of agents produced the largest reduction. Genistein (1 microM), an inhibitor of protein tyrosine kinases, significantly (p<0.01) reduced the amount of P-induced relaxation. The use of strontium in the Kreb's solution as a substitute for Ca(2+) significantly (p<0.01) reduced the amount of CCK-induced tension. Pretreatment of the strips with 2-APB (26 microM), an inhibitor of IP(3,) induced Ca(2+) release, produced a significant (p<0.01) reduction in P-induced relaxation. We conclude that P inhibits gallbladder motility rapidly by nongenomic actions of the hormone. Several pathways that include tyrosine kinase and PKA/cAMP activity may mediate this effect.
    [Abstract] [Full Text] [Related] [New Search]