These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CDK2 translational down-regulation during endothelial senescence.
    Author: Freedman DA, Folkman J.
    Journal: Exp Cell Res; 2005 Jul 01; 307(1):118-30. PubMed ID: 15922732.
    Abstract:
    Here we report for the first time that loss of CDK2 activity, by translational inhibition and through CDK2 inhibition by p21(Cip1/Waf1), may be responsible for endothelial senescence. We show that expression of dominant-negative p53 extends human umbilical vein endothelial cell (HUVEC) lifespan past senescence. HUVEC expressing telomerase can completely bypass senescence and become immortal (i-HUVEC). Surprisingly, early passage i-HUVEC, like senescent HUVEC, express high levels of the CDK inhibitors p16(INK4a) and p21(Cip1/Waf1). Expression of p16(INK4a) can persist for over 280 population doublings, while p21(Cip1/Waf1) expression was eventually lost in five of six i-HUVEC lines. Senescent HUVEC contain undetectable CDK2 activity, which results from a dramatic reduction of CDK2 protein levels and inhibition of remaining CDK2 by p21(Cip1/Waf1). The decreased CDK2 levels in senescent HUVEC are not due to decreased transcription or protein stability; rather, CDK2 translation declines during senescence. Bypass of endothelial senescence by telomerase entails the restoration of CDK2 translation and activity. These results suggest that p16(INK4a) does not play a role in endothelial senescence. Rather, CDK2 translational down-regulation may be a key regulatory event in replicative senescence of endothelial cells. Understanding the mechanisms regulating endothelial senescence will be critical in determining the role of endothelial senescence in tumor growth.
    [Abstract] [Full Text] [Related] [New Search]