These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression and changes of Ca2+-ATPase in neurons and astrocytes in the gerbil hippocampus after transient forebrain ischemia.
    Author: Shin H, Hwang IK, Yoo KY, Song JH, Jung JY, Kang TC, Choi SY, Han BH, Kim JS, Won MH.
    Journal: Brain Res; 2005 Jul 05; 1049(1):43-51. PubMed ID: 15922996.
    Abstract:
    Ca2+-ATPase is one of the most powerful modulators of intracellular calcium levels. In this study, we focused on chronological changes in the immunoreactivity and protein levels of Ca2+-ATPase in the hippocampus after 5 min of transient forebrain ischemia. Ca2+-ATPase immunoreactivity was significantly altered in the hippocampal CA1 region and in the dentate gyrus, but not in the CA2/3 region after ischemic insult. In the sham-operated group, Ca2+-ATPase immunoreactivity was detected in the hippocampus. Ca2+-ATPase immunoreactivity in the CA1 region and in the dentate gyrus, and its protein levels peaked 3 h after ischemic insult. At this time, CA1 pyramidal cells and dentate polymorphic cells showed strong Ca2+-ATPase immunoreactivity. Thereafter, Ca2+-ATPase immunoreactivity reduced in the CA1 region and in the dentate gyrus. One day after ischemic insult, Ca2+-ATPase immunoreactivity was observed in some CA1 non-pyramidal cells, and 4 days after ischemic insult, Ca2+-ATPase immunoreactivity was detected in astrocytes throughout the CA1 region, but Ca2+-ATPase immunoreactivity in the dentate gyrus had nearly disappeared. Our results suggest that Ca2+-ATPase changes may be associated with a response to ischemic damage in hippocampal CA1 pyramidal cells, and that increased Ca2+-ATPase immunoreactivity in the reactive astrocytes may be associated with the maintenance of intracellular calcium levels.
    [Abstract] [Full Text] [Related] [New Search]