These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nucleus retroambiguus-spinal pathway in the mouse: Localization, gender differences, and effects of estrogen treatment.
    Author: Vanderhorst VG.
    Journal: J Comp Neurol; 2005 Jul 25; 488(2):180-200. PubMed ID: 15924340.
    Abstract:
    Nucleus retroambiguus (NRA)-motoneuronal projections are species-specific and serve expiration, Valsalva maneuvers, vocalization, and sexual behavior. In cat and monkey, estrogen induces sprouting of NRA-spinal axons. This pathway may thus serve as a model to study mechanisms through which estrogen induces neuronal plasticity. In this study, NRA-spinal projections are described in adult mice by using anterograde and retrograde tracing techniques, with attention to gender, strain (CD-1 and C57BL/6), and estrogen-induced changes (in ovariectomized females). Labeled NRA-spinal neurons at the level of the decussation of the corticospinal tract were most numerous after tracer injections into the thoracic and upper lumbar cord. They were medium-sized and had axons that descended through the contralateral cord. A group of small neurons was labeled in the NRA immediately rostral to the decussation of the corticospinal tract after cervical and thoracic, but not after lumbar injections. This group projected mainly via an ipsilateral pathway. The main projections from the caudal NRA involved motoneurons in the thoracic and upper-lumbar cord that supply abdominal wall and cremaster muscles. Pelvic floor motoneurons did not receive substantial input. NRA-spinal projections, especially those involving the upper lumbar cord, were sexually dimorphic, being more extensive in males than in females. Moreover, they were more distinct in estrogen-treated females than in control females. Strain differences were not observed. The unique features of the caudal NRA-spinal pathway in the mouse are discussed in the framework of possible functions of this system, such as mating behavior and related social behaviors, parturition, thermoregulation, and control of balance.
    [Abstract] [Full Text] [Related] [New Search]