These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autochelation in dipeptide boronic acids: pH-dependent structures and equilibria of Asp-boroPro and His-boroPro by NMR spectroscopy.
    Author: Sudmeier JL, Zhou Y, Lai JH, Maw HH, Wu W, Bachovchin WW.
    Journal: J Am Chem Soc; 2005 Jun 08; 127(22):8112-9. PubMed ID: 15926838.
    Abstract:
    Many dipeptide boronic acids of the type H(2)N-X-Y-B(OH)(2) are potent protease inhibitors. Interest in these compounds as drugs for cancer, diabetes, and other diseases is growing. Because of the great mutual B-N affinity, cyclization through the N- and B-termini, forming six-membered rings, is a common occurrence at neutral pH and higher where the terminal amino group is unprotonated. Here we report the discovery that when X, the N-terminal amino acid, contains a side chain having a functional group with boron affinity and suitable geometry, additional cyclization in the form of bidentate intramolecular chelation or "autochelation" may occur, predominantly at mid pH. NMR studies of two compounds, l-Aspartyl-l-boroProline (Asp-boroPro) and l-Histidyl-l-boroProline (His-boroPro), are reported here from pH 0.5 to pH 12 by (1)H, (15)N, (13)C, and (11)B NMR. Both of these previously unreported autochelates contain two fused six-membered rings, cis-proline, chiral boron, and -NH(2)(+) protons in slow exchange with water, even at 25 degrees C and pH as high as 4. Using microscopic acid-base equilibrium constants, we show that at high pH (>8 for Asp-boroPro and >10 for His-boroPro) hydroxide competes with the side chains for boron, reducing the chelates from bidentate to monodentate. At low pH (<0.5), proton competition for N-terminal nitrogens causes both compounds to become noncyclic. High chelate stability causes a reduction of the apparent acidic dissociation constant of the protonated N-terminal amino group greater than eight units. In the His-boroPro autochelate, imidazolate anion is produced at the extraordinarily low pH value of approximately 9.
    [Abstract] [Full Text] [Related] [New Search]