These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evolution of treatments for patients with acute lung injury. Author: Esper AM, Martin GS. Journal: Expert Opin Investig Drugs; 2005 May; 14(5):633-45. PubMed ID: 15926869. Abstract: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are acute life-threatening forms of hypoxemic respiratory failure. ALI/ARDS patients require intensive care with prolonged mechanical ventilation. Despite advances in our understanding of the pathophysiology of ALI/ARDS, mortality rates remain > 30% and survivors suffer significant decrements in their quality of life. The evolving understanding of ALI/ARDS and the complex interactions involved in ALI/ARDS open the door for many potential targets for treatment. The condition is characterised by an acute inflammatory state that leads to increased capillary permeability and accumulation of proteinaceous pulmonary oedema. The changes that occur as a result of this inflammation clinically manifest themselves as hypoxemia, infiltrates on chest radiograph and reduced lung compliance. Many years have been dedicated to analysing the complexities involved in ALI/ARDS in order to improve current and future possibilities for treatment, with the aim of improving patient outcomes. Although some therapies have demonstrated benefits of improved oxygenation, such as surfactant and nitric oxide, these benefits have not translated into reductions in the duration of mechanical ventilation or mortality. Inflammatory mediator-targeted therapies were promising early on; however, larger trials have found therapies such as cytokine modulation, platelet-activating factor inhibition and neutrophil elastase inhibitors to be ineffective in the treatment of ALI/ARDS. Preclinical studies with beta2-agonists and granulocyte macrophage colony-stimulating factor have shown promise for restoring alveolar capillary barrier integrity or reducing pulmonary oedema, and further studies are being conducted to test for true clinical benefit. Despite previous therapeutic failures, newer surfactant formulations have shown promise, particularly in patients with direct forms of lung injury, and are currently in Phase III trials. Anticoagulant therapy with activated protein C has been shown to improve survival in sepsis, the most common risk factor for the development of ALI/ARDS, and is now being studied in ALI/ARDS. Until new data emerge, the focus must remain on supportive care, including optimised mechanical ventilation, nutritional support, manipulation of fluid balance and prevention of intervening medical complications.[Abstract] [Full Text] [Related] [New Search]