These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The distribution and cellular localization of glutamic acid decarboxylase-65 (GAD65) mRNA in the forebrain and midbrain of domestic chick. Author: Sun Z, Wang HB, Laverghetta A, Yamamoto K, Reiner A. Journal: J Chem Neuroanat; 2005 Jun; 29(4):265-81. PubMed ID: 15927788. Abstract: The distribution and cellular localization of GAD65 mRNA in the forebrain and midbrain of domestic chick were examined by in situ hybridization histochemistry with (35)[S]-UTP labeled cRNA probes, using film and emulsion autoradiography. Film autoradiograms showed intense GAD65 labeling in many structures of the basal telencephalon, such as the medial and lateral striatum, the septum, the olfactory tubercle, the lateral bed nucleus of the stria terminalis, and the intrapeduncular nucleus, while the pallial telencephalon showed only a low level of labeling. Emulsion-coated sections revealed that GAD65 mRNA-containing neurons were at least six times more abundant in striatum than pallium, with only a uniformly scattered subpopulation labeled in pallium, and that the vast majority of the large scattered projection neurons of globus pallidus were heavily labeled for GAD65. Prominent labeling was also evident in the nucleus taeniae and subpallial amygdala, but not in the arcopallium in film autoradiograms. Within the diencephalon, the hypothalamus was more GAD65-rich than the thalamus. Additional subtelencephalic cell groups showing prominent labeling included the thalamic reticular nucleus and ventral lateral geniculate nucleus of the diencephalon, the nucleus pretectalis, subpretectalis and spiriformis lateralis of the pretectum, and the magnocellular isthmic nucleus of the optic lobe. Tectal layers 9-10 were also rich in GAD65. These results further clarify GABAergic circuits of the avian forebrain and midbrain, and show them to closely resemble those in mammals.[Abstract] [Full Text] [Related] [New Search]