These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The X4 phenotype of HIV type 1 evolves from R5 in two children of mothers, carrying X4, and is not linked to transmission. Author: Clevestig P, Maljkovic I, Casper C, Carlenor E, Lindgren S, Navér L, Bohlin AB, Fenyö EM, Leitner T, Ehrnst A. Journal: AIDS Res Hum Retroviruses; 2005 May; 21(5):371-8. PubMed ID: 15929699. Abstract: Previously, we found that emergence of the X4 viral phenotype in HIV-1-infected children was related to the presence of X4 in their mothers (C.H. Casper et al., J Infect Dis 2002; 186:914-921). Here, we investigated the origin of the X4 phenotype in the child, analyzing two mother-child pairs (Ma-Ca, Mb-Cb) where the mothers carried X4 and their children developed X4 after an initial presence of R5. We used nested polymerase chain reaction of the env V3 region to generate 203 HIV-1 clones for sequencing (Ma, n = 44; Ca, n = 73; Mb, n = 61; Cb, n = 25) from DNA of peripheral blood mononuclear cell (PBMC) lysates, altogether 167 clones, or from cDNA of plasma RNA, 36 clones. PBMC and plasma isolate sequences from each time point enabled us to assign the probable phenotype to clone sequences in a phylogenetic tree. The transmission and evolution were reconstructed using the maximum likelihood method. In mother-child pair Ma-Ca, one maternal R5 isolate clustered with the child's R5 sequences, at the earliest time when R5 was isolated in the child, confirming this as a likely source of the transmitted R5 phenotype. At age 3, an X4 population was present in the child that had evolved from the child's own R5-associated population, clearly distinct from the maternal X4 sequences. The second mother-child pair (Mb-Cb) displayed a similar pattern. Amino acid substitution patterns corroborated the conclusions from the phylogenetic tree. Thus, in both children, the X4 virus developed from their own R5 population, and was not caused by transmission of X4.[Abstract] [Full Text] [Related] [New Search]