These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence. Author: Lin HN, Chang JM, Wu KP, Sung TY, Hsu WL. Journal: Bioinformatics; 2005 Aug 01; 21(15):3227-33. PubMed ID: 15932901. Abstract: MOTIVATION: In our previous approach, we proposed a hybrid method for protein secondary structure prediction called HYPROSP, which combined our proposed knowledge-based prediction algorithm PROSP and PSIPRED. The knowledge base constructed for PROSP contains small peptides together with their secondary structural information. The hybrid strategy of HYPROSP uses a global quantitative measure, match rate, to determine whether PROSP or PSIPRED is to be used for the prediction of a target protein. HYPROSP made slight improvement of Q(3) over PSIPRED because PROSP predicted well for proteins with match rate >80%. As the portion of proteins with match rate >80% is quite small and as the performance of PSIPRED also improves, the advantage of HYPROSP is diluted. To overcome this limitation and further improve the hybrid prediction method, we present in this paper a new hybrid strategy HYPROSP II that is based on a new quantitative measure called local match rate. RESULTS: Local match rate indicates the amount of structural information that each amino acid can extract from the knowledge base. With the local match rate, we are able to define a confidence level of the PROSP prediction results for each amino acid. Our new hybrid approach, HYPROSP II, is proposed as follows: for each amino acid in a target protein, we combine the prediction results of PROSP and PSIPRED using a hybrid function defined on their respective confidence levels. Two datasets in nrDSSP and EVA are used to perform a 10-fold cross validation. The average Q(3) of HYPROSP II is 81.8% and 80.7% on nrDSSP and EVA datasets, respectively, which is 2.0% and 1.1% better than that of PSIPRED. For local structures with match rate >80%, the average Q(3) improvement is 4.4% on the nrDSSP dataset. The use of local match rate improves the accuracy better than global match rate. There has been a long history of attempts to improve secondary structure prediction. We believe that HYPROSP II has greatly utilized the power of peptide knowledge base and raised the prediction accuracy to a new high. The method we developed in this paper could have a profound effect on the general use of knowledge base techniques for various predictionalgorithms. AVAILABILITY: The Linux executable file of HYPROSP II, as well as both nrDSSP and EVA datasets can be downloaded from http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/.[Abstract] [Full Text] [Related] [New Search]