These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Author: Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Journal: Endocrinology; 2005 Sep; 146(9):3748-56. PubMed ID: 15932924. Abstract: Glucagon-like peptide-1(7-36NH2) (GLP-1) and peptide YY(3-36NH2) (PYY(3-36NH2)) are cosecreted from the intestine in response to nutrient ingestion. Peripheral administration of GLP-1 or PYY(3-36NH2) decreases food intake (FI) in rodents and humans; however, the exact mechanisms by which these peptides regulate FI remain unclear. Male C57BL/6 mice were injected (ip) with exendin-4(1-39) (Ex4, a GLP-1 receptor agonist) and/or PYY(3-36NH2) (0.03-3 microg), and FI was determined for up to 24 h. Ex4 and PYY(3-36NH2) alone decreased FI by up to 83 and 26%, respectively (P < 0.05-0.001), whereas a combination of the two peptides (0.06 microg Ex4 plus 3 microg PYY(3-36NH2)) further reduced FI for up to 8 h in a synergistic manner (P < 0.05-0.001). Ex4 and/or PYY(3-36NH2) delayed gastric emptying by a maximum of 19% (P < 0.01-0.001); however, there was no significant effect on locomotor activity nor was there induction of taste aversion. Capsaicin pretreatment prevented the inhibitory effect of Ex4 on FI (P < 0.05), but had no effect on the anorexigenic actions of PYY(3-36NH2). Similarly, exendin-4(9-39) (a GLP-1 receptor antagonist) partially abolished Ex4-induced anorexia (P < 0.05), but did not affect the satiation produced by PYY(3-36NH2). Conversely, BIIE0246 (a Y2 receptor antagonist) completely blocked the anorexigenic effects of PYY(3-36NH2) (P < 0.001), but had no effect on Ex4-induced satiety. Thus, Ex4 and PYY(3-36NH2) suppress FI via independent mechanisms involving a GLP-1 receptor-dependent, sensory afferent pathway (Ex4) and a Y2-receptor mediated pathway (PYY(3-36NH2)). These findings suggest that administration of low doses of Ex4 together with PYY(3-36NH2) may increase the suppression of FI without inducing significant side effects.[Abstract] [Full Text] [Related] [New Search]