These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Ecophysiological properties of photosynthesizing bacteria from the Black Sea chemocline zone]. Author: Gorlenko VM, Mikheev PV, Rusanov II, Pimenov NV, Ivanov MV. Journal: Mikrobiologiia; 2005; 74(2):239-47. PubMed ID: 15938401. Abstract: In May 1998, during the fifty-first voyage on board the research vessel Professor Vodyanitskii, a comparative study was conducted of the species diversity of green and purple sulfur bacteria in the water column of the chemocline zone at deep-sea stations and on the bottom surface of the Black Sea shallow regions. At three deep-sea stations, the accumulation of photosynthesizing bacteria in the chemocline zone at a depth of 85-115 m was revealed on the basis of the distribution of potential values of carbon dioxide light fixation. The location of the site of potential carbon dioxide light fixation suggests that the photosynthesis may be determined by the activity of the brown Chlorobium sp., revealed earlier at these depths. Enrichment cultures of brown sulfur bacteria were obtained from samples taken at the deep-sea stations. By morphology, these bacteria, assigned to Chlorobium sp., appear as nonmotile straight or slightly curved rods 0.3-0.5 x 0.7-1.2 microm in size; sometimes, they form short chains. Ultrathin sections show photosynthesizing antenna-like structures, chlorosomes, typical of Chlorobiaceae. The cultures depended on the presence of NaCl (20 g/l) for growth, which corresponds to the mineralization of Black Sea water. The bacteria could grow photoautotrophically, utilizing sulfide, but the Black Sea strains grew much more slowly than the known species of brown sulfur bacteria isolated from saline or freshwater meromictic lakes. The best growth of the strains studied in this work occurred in media containing ethanol (0.5 g) or sodium acetate (1 g/l) and low amounts of sulfide (0.4 mM), which is consistent with the conditions of syntrophic growth with sulfidogens. The data obtained allow us to conclude that the cultures of brown sulfur bacteria are especially adapted to developing at large depths under conditions of electron donor deficiency owing to syntrophic development with sulfate reducers. The species composition of the photosynthetic bacteria developing in the bottom sediments of shallow stations differed substantially from that observed at deep-sea stations. Pure cultures of the green Chlorobium sp. BS 1C and BS 2C (chlorobactin as the carotenoid), purple sulfur bacteria Chromatium sp. BS 1Ch (containing spirilloxanthine series pigments), and Thiocapsa marina BS 2Tc (containing the carotenoid okenone) were obtained from samples of sediments at shallow-water stations. Brown sulfur bacteria were absent in the sediment samples obtained from the Black Sea shallow-water stations 1 and 2.[Abstract] [Full Text] [Related] [New Search]