These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning, expression and characterization of human glutathione S-transferase Omega 2. Author: Wang L, Xu J, Ji C, Gu S, Lv Y, Li S, Xu Y, Xie Y, Mao Y. Journal: Int J Mol Med; 2005 Jul; 16(1):19-27. PubMed ID: 15942673. Abstract: The class of Omega glutathione transferases is newly identified with novel structural and functional characteristics. Human GSTO 1-1 (glutathione S-transferase Omega 1) is the first member of the GST Omega class. It was found to play a role in apoptosis and be in association with age-at-onset of AD and PD. In order to improve the understanding of the properties of other Omega class members, we screened a human fetal brain cDNA library and obtained the human GSTO2 (glutathione S-transferase Omega 2) cDNA. The full-length cDNA of human GSTO2 is 1179 bp long and encodes a protein of 243 amino acid residues. Expression pattern analysis revealed that GSTO2 was ubiquitously expressed at a low level, with a higher expression in pancreas and prostate. Enzyme assays showed that GSTO2 protein had activities similar to Omega class GSTs. It has detectable glutathione-dependent thiol transferase activity and glutathione-dependent dehydroascorbate reductase activity. But different from GSTO1-1, GSTO2 exhibits a high catalytic activity with CDNB. Subcellular localization analysis of GSTO2-EGFP fusion protein revealed that GSTO2 distributed to cytoplasm of COS-7 cells and both cytoplasm and nucleus of L-02, QGY-7703 and SMMC-7721 cells. Overexpression of GSTO2 induced apoptosis of L-02 cells detected by Annexin V-PE staining. The results suggest that GSTO2 may play an important role in cellular signaling.[Abstract] [Full Text] [Related] [New Search]