These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice. Author: Smiley ST, Lanthier PA, Couper KN, Szaba FM, Boyson JE, Chen W, Johnson LL. Journal: J Immunol; 2005 Jun 15; 174(12):7904-11. PubMed ID: 15944296. Abstract: Mice lacking functional CD1d genes were used to study mechanisms of resistance to the protozoan parasite Toxoplasma gondii. Wild-type (WT) BALB/c mice, CD1d-deficient BALB/c mice, and WT C57BL/6 mice all survived an acute oral infection with a low dose of mildly virulent strain ME49 T. gondii cysts. In contrast, most CD1d-deficient C57BL/6 mice died within 2 wk of infection. Despite having parasite burdens that were only slightly higher than WT mice, CD1d-deficient C57BL/6 mice displayed greater weight loss and intestinal pathology. In C57BL/6 mice, CD4(+) cells can cause intestinal pathology during T. gondii infection. Compared with WT mice, infected CD1d-deficient C57BL/6 mice had higher frequencies and numbers of activated (CD44(high)) CD4(+) cells in mesenteric lymph nodes. Depletion of CD4(+) cells from CD1d-deficient mice reduced weight loss and prolonged survival, demonstrating a functional role for CD4(+) cells in their increased susceptibility to T. gondii infection. CD1d-deficient mice are deficient in Valpha14(+) T cells, a major population of NKT cells. Involvement of these cells in resistance to T. gondii was investigated using gene-targeted Jalpha18-deficient C57BL/6 mice, which are deficient in Valpha14(+) T cells. These mice did not succumb to acute infection, but experienced greater weight loss and more deaths than B6 mice during chronic infection, indicating that Valpha14(+) cells contribute to resistance to T. gondii. The data identify CD4(+) cells as a significant component of the marked susceptibility to T. gondii infection observed in CD1d-deficient C57BL/6 mice, and establish T. gondii as a valuable tool for deciphering CD1d-dependent protective mechanisms.[Abstract] [Full Text] [Related] [New Search]