These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: AIP4 restricts transforming growth factor-beta signaling through a ubiquitination-independent mechanism.
    Author: Lallemand F, Seo SR, Ferrand N, Pessah M, L'Hoste S, Rawadi G, Roman-Roman S, Camonis J, Atfi A.
    Journal: J Biol Chem; 2005 Jul 29; 280(30):27645-53. PubMed ID: 15946939.
    Abstract:
    Smad7 functions as an intracellular antagonist in transforming growth factor-beta (TGF-beta) signaling. In addition to interacting stably with the activated TGF-beta type I receptor (TbetaRI) to prevent phosphorylation of the receptor-regulated Smads (Smad2 and Smad3), Smad7 also induces degradation of the activated TbetaRI through association with different E3 ubiquitin ligases. Using the two-hybrid screen, we identified atrophin 1-interacting protein 4 (AIP4) as an E3 ubiquitin ligase that specifically targets Smad7 for ubiquitin-dependent degradation without affecting the turnover of the activated TbetaRI. Surprisingly, we found that despite the ability to degrade Smad7, AIP4 can inhibit TGF-beta signaling, presumably by enhancing the association of Smad7 with the activated TbetaRI. Consistent with this notion, expression of a catalytic mutant of AIP4, which is unable to induce ubiquitination and degradation of Smad7, also stabilizes the TbetaRI.Smad7 complex, resulting in inhibition of TGF-beta signaling. The ability of AIP4 to enhance the inhibitory function of Smad7 independent of its ubiquitin ligase activity reveals a new mechanism by which E3 ubiquitin ligases may function to turn off TGF-beta signaling.
    [Abstract] [Full Text] [Related] [New Search]