These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells.
    Author: Maier TJ, Janssen A, Schmidt R, Geisslinger G, Grösch S.
    Journal: FASEB J; 2005 Aug; 19(10):1353-5. PubMed ID: 15946992.
    Abstract:
    Celecoxib, a cyclooxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drug, is a new anticarcinogenic agent. Its antitumor effects depend on the one hand on its COX-2-inhibiting potency, but on the other hand on COX-2-independent mechanisms, which until now have not been fully understood. Here, we investigated whether celecoxib has an impact on the APC/beta-catenin pathway, which has been shown to play a pivotal role in the development of various cancers, especially of the colon. After only 2 h of treatment of human Caco-2 colon carcinoma cells with 100 muM celecoxib, we observed a rapid translocation of beta-catenin from its predominant membrane localization to the cytoplasm. Inhibition of the glycogen-synthase-kinase-3beta (GSK-3beta) by LiCl prevented this celecoxib-induced translocation, suggesting that phosphorylation of beta-catenin by the GSK-3beta kinase was essential for this release. Furthermore, the cytosolic accumulation was accompanied by a rapid increase of beta-catenin in the nuclei, starting already 30 min after celecoxib treatment. The DNA binding activity of beta-catenin time dependently decreased 2 h after celecoxib treatment. After this cellular reorganization, we observed a caspase- and proteasome-dependent degradation of beta-catenin after 8 h of drug incubation. Celecoxib-induced beta-catenin degradation was also observed in various other tumor cell lines (HCT-116, MCF-7, and LNCAP) but was not seen after treatment of Caco-2 cells with either the anticarcinogenic nonsteroidal anti-inflammatory drug R-flurbiprofen or the highly COX-2-selective inhibitor rofecoxib. These findings indicate that the anticarcinogenic effects of celecoxib can be explained, at least partly, by an extensive degradation of beta-catenin in human colon carcinoma cells.
    [Abstract] [Full Text] [Related] [New Search]