These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Author: Lombardi AT, Hidalgo TM, Vieira AA. Journal: Chemosphere; 2005 Jul; 60(4):453-9. PubMed ID: 15950037. Abstract: Dissolved organic materials released by the freshwater microalgae Scenedesmus acuminatus were fractionated into low- and high-molecular weight materials, which were investigated for their capacity to bind copper. The high-molecular weight material was also investigated for its monosaccharide composition and is further discussed in relation to the copper binding property. S. acuminatus was grown in batch cultures under laboratory controlled conditions and harvested at the beginning of stationary growth phase when exuded organic materials were obtained. Copper-complexing property of the total exuded organic materials and exopolysaccharides before and after freeze-drying was evaluated by complexometric titrations and Scatchard Plot Analysis of the titration data. The results revealed the presence of two copper-complexing ligands in the total exuded material, but only one in the exopolysaccharide. Stronger copper-complexing ligands are associated to low molecular weight compounds (LogK'1=7.3, LogCL1=-5.6; LogK'2=6.3, LogCL2=-5.1), whereas weaker ligands to the high molecular weight fraction (LogK'2=6.4, LogCL2=-5.6). Although freeze-drying the polymeric organic material (exopolysaccharide) may result in conformational changes of the molecule, no effect on copper-complexing properties was detected. Gas chromatography was used to evaluate the monosaccharide composition of the microalgal exopolysaccharide, which detected high content of mannose and 12% of acid monosaccharides.[Abstract] [Full Text] [Related] [New Search]