These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human intestinal and lung cell lines exposed to beta-carotene show a large variation in intracellular levels of beta-carotene and its metabolites.
    Author: Franssen-van Hal NL, Bunschoten JE, Venema DP, Hollman PC, Riss G, Keijer J.
    Journal: Arch Biochem Biophys; 2005 Jul 01; 439(1):32-41. PubMed ID: 15950170.
    Abstract:
    Although in vitro models are often used in beta-carotene research, knowledge about the uptake and metabolism of beta-carotene in cell lines is lacking. We measured by HPLC the intracellular levels of beta-carotene and its metabolites in 9 human intestinal and lung cell lines after exposure to 1 microM beta-carotene during 2, 6, 30, 54 h, and 3 weeks. In three colorectal carcinoma cell lines only low levels of beta-carotene could be detected and an apparent linear increase in intracellular beta-carotene was observed during the whole exposure period of 3 weeks. The remaining cell lines (an SV40 transformed colon cell line, a small intestinal carcinoma cell line and several lung cell lines) had medium or high intracellular beta-carotene levels. In these cell lines intracellular beta-carotene quickly increased during the first 54 h of exposure and after 3 weeks no further increase was observed, suggesting a stable level of beta-carotene after 54 h. Estimated intracellular concentrations at steady-state levels varied between 2 and 5 microM (low) or 9 and 55 microM (medium/high). Our results seem to indicate that an active uptake mechanism of beta-carotene exists in at least a subset of cell lines. Seven different beta-carotene metabolites were detected in the various cell lines (cis-carotene, retinol, three epoxy-carotenes, and two retinyl esters). Metabolite levels were the highest in cells with medium or high beta-carotene levels. Each cell line appeared to have a distinct metabolite profile. No intestinal or lung specific pattern could be found, but two epoxy-carotene metabolites were not detectable in the colon cell lines.
    [Abstract] [Full Text] [Related] [New Search]