These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin-like growth factor I treatment for cerebellar ataxia: addressing a common pathway in the pathological cascade? Author: Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. Journal: Brain Res Brain Res Rev; 2005 Dec 01; 50(1):134-41. PubMed ID: 15950289. Abstract: In the present work we review evidence supporting the use of insulin-like growth factor I (IGF-I) for treatment of cerebellar ataxia, a heterogeneous group of neurodegenerative diseases of low incidence but high societal impact. Most types of ataxia display not only motor discoordination, but also additional neurological problems including peripheral nerve dysfunctions. Therefore, a feasible therapy should combine different strategies aimed to correct the various disturbances specific for each type of ataxia. For cerebellar deficits, and most probably also for other types of brain deficits, the use of a wide-spectrum neuroprotective factor such as IGF-I may prove beneficial. Intriguingly, both ataxic animals as well as human patients show altered serum IGF-I levels. While the pathogenic significance of IGF-I, if any, in this varied group of diseases is difficult to envisage, disrupted IGF-I neuroprotective signaling may constitute a common stage in the pathological cascade associated to neuronal death. Indeed, treatment with IGF-I has proven effective in animal models of ataxia. Based on this pre-clinical evidence we propose that IGF-I should be tested in clinical trials of cerebellar ataxia in those cases where either serum IGF-I deficiency (as in primary cerebellar atrophy) or loss of sensitivity to IGF-I (as in ataxia telangiectasia) has been reported. Taking advantage of the widely protective and anabolic actions of IGF-I on peripheral tissues, this neurotrophic factor may provide additional therapeutic advantages for many of the disturbances commonly associated to ataxia such as cardiopathy, muscle wasting, or immune dysfunction.[Abstract] [Full Text] [Related] [New Search]