These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure and thermal history dependent phase behavior of hydrated synthetic sphingomyelin analogue: 1,2-dimyristamido-1,2-deoxyphosphatidylcholine. Author: Takahashi H, Okumura Y, Sunamoto J. Journal: Biochim Biophys Acta; 2005 Jul 15; 1713(1):40-50. PubMed ID: 15950928. Abstract: The physical properties of hydrated multilamellar sample of 1,2-dimyristamido-1,2-deoxyphosphatidylcholine (DDPC) were investigated by means of differential scanning calorimetry (DSC), static X-ray diffraction, and simultaneous DSC and X-ray diffraction. The DDPC is a synthetic sphingomyelin analogue and has two amide bonds in its hydrophobic parts. This paper reports on metastable phase behavior of the hydrated DDPC sample. By cooling from a chain-melted state at the rates of greater than 4 degrees C min(-1), hydrated DDPC bilayers form a metastable gel phase. In the gel phase, the hydrophobic chains are tilted with respect to the bilayer normal, as like the gel phase of glycero-phosphatidylcholines. By heating, the metastable gel phase is transformed in to a stable phase associated with an exothermic heat event at 18.3 degrees C (DeltaH=14.6 kJ mol(-1)) and then the stable phase is transformed into a liquid-crystalline phase at 25.6 degrees C (DeltaH=42 kJ mol(-1)). The incubation at 17 degrees C for more than 1 h also induces the formation of the stable phase. In the stable phase, the hydrophobic chains are packed into highly ordered crystal-like structure. However, the X-ray diffraction pattern of the stable phase suggested that the entire DDPC molecules do not form a two-dimensional molecular ordered lattice, differing from normal subgel phase of glycero-phosphatidylcholines. The structure and phase behavior of DDPC revealed by the present study are discussed from the viewpoint of hydrogen bonds.[Abstract] [Full Text] [Related] [New Search]